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Abstract. With a view to further refining the use of the exceptional groupG2 in atomic and
nuclear spectroscopy, it is confirmed that a simple finite subgroupL168 ∼ PSL2(7) of order 168
of the symmetric groupS8 is also a subgroup ofG2. It is established by character theoretic and
other methods that there are two distinct embeddings ofL168 in G2, analogous to the two distinct
embeddings ofSO(3) in G2. Relevant branching rules, tensor products and symmetrized tensor
products are tabulated. As a stimulus to further applications the branching rules are given for the
restriction fromL168 to the octahedral crystallographic point groupO.

1. Introduction

The exceptional groupG2, while known to mathematicians since Cartan’s thesis [1] of 1894
was not introduced to physicists until some 50 years ago in Racah’s [2] 1949 paper ‘The
Theory of Complex Spectra IV’, in which he used the groupG2 in his classification of the
states of the fn electron configurations and in the simplification of the calculation of the matrix
elements of the Coulomb and spin–orbit interactions‖. Racah was able to exploit the fact that
G2 occurs as a subgroup of the rotation group in seven dimensions,SO(7), and furthermore,
that the physical rotation groupSO(3) associated with the angular momentum of electrons in
f orbitals occurs as a natural subgroup ofG2. Racah’s work has been well described by Judd
[3]. In nuclear physics [4] it was also possible to exploit the groupG2 in the classification of
the states of the f shell. The groupSU(3) also occurs as a subgroup ofG2, a fact that has been
exploited in the interacting boson model of nuclei [5].

Judd [6] has suggested that it might be useful to find and exploit some non-trivial finite
subgroups ofG2 noting, in particular, the subgroups of the symmetric groupS8 listed by
Littlewood [7]. This possibility is encouraged by the occurrence of irreducible representations
of dimension seven in Littlewood’s groups of order 1344 and 168. The group of order
168 is of particular interest herein. It contains not only a dimension seven irreducible
representation, but also a complex pair of irreducible representations of dimension three which

∗ Dedicated to the memory of Giulio Racah 1909–1965.
‖ The introduction ofG2 in physics is said to have arisen in one of Racah’s lectures in Jerusalem where he spoke
about the problem of labelling for f and d electrons. He discussed the power of group theory in physics in general and
spectroscopy in particular. One thing led to another and then he suddenly left the class. Later he told students that he
was so consumed by the idea that he did not notice leaving. . . .
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Table 1. Character table forL168.

Cycles (18) (24) (1232) (42) (17) (17)
Order 1 21 56 42 24 24

a 1 1 1 1 1 1
b 6 2 0 0 −1 −1
h 7 −1 1 −1 0 0
j 8 0 −1 0 1 1

k 3 −1 0 1 1
2(−1 + i

√
7) 1

2(−1− i
√

7)

l 3 −1 0 1 1
2(−1− i

√
7) 1

2(−1 + i
√

7)

is suggestive of an embedding inSU(3). We shall designate Littlewood’s order 168 group
asL168 noting that it appears in the Atlas of Finite Groups [8] asL3(2) ∼ L2(7), meaning
that it is isomorphic toGL3(2), the general linear group in three dimensions over a field
of order two, and toPSL2(7), the projective special linear group in two dimensions over a
field of order seven. In addition, the Atlas indicates that it is isomorphic toPSU2(7) and
O3(7). The Atlas indicates thatL168 may be specified in terms of generators and relations by
〈R, S, T , |R2 = S3 = T 7 = RST = (T SR)4 = 1〉. It can then be realized as a subgroup
of the symmetric groupS8 through the identificationR = (18)(27)(34)(56), S = (128)(375)
andT = (1234567). Since these permutations are all of even parity,L168 is also a subgroup
of the alternating groupA8.

In the Atlas account ofL168 nothing is said aboutG2, nor indeedO(7), the orthogonal
group in seven dimensions. However, a search of the literature reveals [9–11] thatL168 is
indeed a subgroup ofG2. Moreover, it has been established [10] that any two embeddings
of a finite group inG2 are conjugate if and only if they afford the same character on the
natural seven-dimensional representation ofSO(7). In this paper it is confirmed by character
theoretic and other methods that there exist two non-conjugate embeddings ofL168 in G2.
These embeddings are explored in some detail along with the corresponding branching rules.

We first establish, in section 2, some simple properties of the group–subgroup pair
S8 ⊃ L168 that follow directly from their respective character tables and then explicitly
identifyL168 as a finite subgroup of bothG2 andSU(3) by means of techniques based on the
consideration of various plethysms, or symmetrized tensor and indeed spinor products. This is
augmented in section 4 by an alternative derivation of the explicit form of the embeddings that
is based on the use of a rather simple necessary and sufficient condition for any finite group
H to be a subgroup ofG2. This derivation involves a consideration not just of the characters
of representations, but of the eigenvalues of group elements in those representations.

We then compute, in section 5, some explicit branching rules forG2 → L168 and for
SU(3)→ L168 giving sufficient data for possible future applications to such things as a study
of the properties of f electrons in an octahedral environment. To this end the branching rules
for L168 to the octahedral point groupO are tabulated in section 6.

2. L168 as a subgroup ofS8

The characters of the groupL168 as given by Littlewood [7] are reproduced in table 1. We
label the six irreducible representations ofL168 by the letter sequencea, b, h, j, k, l. In the
notation of the Atlas [8] the corresponding characters are denoted byχ1, χ4, χ5, χ6, χ2, χ3,
respectively. In particular, the irreducible representationa with characterχ1 is the trivial,
identity representation ofL168.

Making use of the character table [7] forS8 together with table 1 readily gives the
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Table 2. Branching rules forS8→ L168.

Dim S8→ L168

1 {8} a

7 {71} h

20 {62} 2b + j
21 {612} h + j + k + l
28 {53} 2h + j + k + l
64 {521} 2b + 2h + 4j + k + l
35 {513} a + 2b + 2h + j
14 {42} 2a + 2b
70 {431} 2b + 4h + 3j + k + l
56 {422} a + 4b + h + 3j
90 {4212} 2b + 4h + 4j + 3k + 3l
42 {322} 2h + 2j + 2k + 2l

Table 3. The resolution of Kronecker products and plethysms for the non-trivial irreducible
representations ofL168.

Product Resolution Plethysm Resolution

b × h b + 2h + 2j + k + l b ⊗ {2} a + 2b + j
b × j 2b + 2h + 2j + k + l b ⊗ {12} h + j
b × k h + j + l h⊗ {2} a + 2b + h + j
b × l h + j + k h⊗ {12} h + j + k + l
h× j 2b + 2h + 3j + k + l j ⊗ {2} a + 2b + h + 2j
h× k b + h + j j ⊗ {12} 2h + j + k + l
h× l b + h + j k ⊗ {2} b

j × k b + h + j + k k ⊗ {12} l

j × l b + h + j + l l ⊗ {2} b

k × l a + j l ⊗ {12} k

S8 → L168 branching rules given in table 2. Since underS8 → L168 the decompositions
of irreducible representations labelled by conjugate partitions are the same we give only the
decomposition in the case of one partition of each conjugate pair.

Next we need to know the decomposition of Kronecker products of all the irreducible
representations ofL168, and in the case of Kronecker squares their resolution into their
symmetric and antisymmetric parts. Again these decompositions may be readily calculated
from the character tables. The non-trivial products and their resolution are given in table 3.

It can be deduced from table 3 that all irreducible representations other than the trivial
representationa are faithful representations ofL168. This is a consequence of the fact that a
representationλH of a finite groupH is faithful if and only if all the irreducible representations
of H appear in the decomposition of some Kronecker power ofλH . The same conclusion is
reached by noting thatL168 is simple.

Furthermore, an irreducible representationλH of a groupH is orthogonal if and only if the
symmetrized squareλG ⊗ {2} contains the trivial, identity representation ofH . From table 3
it can be seen, therefore, thatb, h, j are all orthogonal, whilek andl are not orthogonal. This
can also be deduced, of course, from the fact that their characters are complex. Indeedk and
l constitute a mutually complex conjugate pair of unitary irreducible representations ofL168.
This is sufficient to conclude that their direct sumk + l is orthogonal.
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3. L168 as a subgroup ofG2

It is well known that the symmetric groupSn+1 occurs as a subgroup of the full orthogonal
groupO(n) and henceO(7) ⊃ S8. In such an embedding the vector irreducible representation
[1] of O(7) decomposes irreducibly into the{71} irreducible representation ofS8. The
irreducible representation{71} is orthogonal but not unimodular [12] and hence whileS8

may be embedded inO(7) it cannot be embedded inSO(7). The irreducible representations
ofG2 are all orthogonal and unimodular, including the defining seven-dimensional irreducible
representation. It follows thatG2 is subgroup ofSO(7). This is sufficient to show thatS8 is
certainly not a subgroup ofG2.

In order to show thatL168 is a subgroup ofG2 the key observation is to note the
characterization [13] ofG2 as the subgroup ofSO(7) which leaves a spinor invariant and
to determine whether any unimodular, orthogonal, faithful seven-dimensional representation
of L168 shares this characteristic. In what follows two such representations are found,
corresponding to two distinct embeddings ofL168 in G2. SinceSU(3) is a subgroup of
G2 the question arises as to whether or not an embedding ofL168 in G2 corresponds to an
embedding ofL168 in SU(3). This can be established through the identification, if possible, of
some unimodular, unitary, faithful three-dimensional representation ofL168. One of the two
embeddings identified below is of this type.

It is straightforward to dispose of the question of unimodularity. Quite generally, any
irreducible representationλH of a groupH , having dimensionN , is unimodular if and only
if the N th-fold antisymmetrized Kronecker power,λH ⊗ {1N } is just the trivial, identity
representation ofH . Since λH ⊗ {1N } necessarily has dimension one, it follows that
every irreducible representationλH of H is unimodular ifH possesses no one-dimensional
irreducible representation other than the identity representation. This is true, for example, of
the alternating groupAn, and as can be seen from table 1 it is also true ofL168. It follows that
every irreducible representation ofL168 is unimodular. Moreover, since every representation
is a direct sum of irreducible representations, all representations ofL168 are unimodular.

Recalling the conclusions regarding the orthogonality of representations ofL168 which we
drew from table 3, we can conclude that the only seven-dimensional unimodular orthogonal
representations ofL168 areh, a +b, a +k + l and 7a. Of these all are faithful except, of course,
7a. Each of the others defines an embedding ofL168 in SO(7).

Before proceeding further we must address the labelling of the irreducible representations
ofG2. Two schemes exist in the literature, the traditional scheme of Racah [2] and that based
upon [14] theSU(3) subgroup ofG2. In the latter scheme the irreducible representations of
G2 are labelled by(λ1, λ2) whereλ1 andλ2 are non-negative integers such thatλ1 > 2λ2.
Racah’s labels(u1, u2) are such thatu1 = λ1 − λ2 andu2 = λ2. Throughout this paper we
shall use theSU(3) labelling scheme with separational commas and trailing zeros normally
omitted.

The defining representation ofG2 is the fundamental seven-dimensional irreducible
representation(1). Separating the Kronecker square of this irreducible representation ofG2

into its symmetric and antisymmetric parts gives

(1)⊗ {2} = (2) + (0) and (1)⊗ {12} = (21) + (1).

It follows that ifG2 containsH as a subgroup with(1)→ λH , whereλH is a representation,
not necessarily irreducible, ofH , then the identity representation, 1H , ofH must occur in the
decomposition of the symmetric partλH ⊗ {2} of the Kronecker square ofλH , and thatλH
itself must occur in the decomposition of the antisymmetric partλH ⊗ {12} of its Kronecker
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square, ie.

〈λH ⊗ {2}, 1H 〉 > 1 and 〈λH ⊗ {12}, λH 〉 > 1. (1)

These are necessary, though not sufficient, conditions forH to be a subgroup ofG2.
The first of these conditions is guaranteed ifλH is orthogonal, but this is not enough to

guarantee the satisfaction of the second condition. For example, the fact that forS8 we have

{71} ⊗ {2} = {8} + {71} + {62} and {71} ⊗ {12} = {612}
immediately precludes the possibility ofS8 being a subgroup ofG2 with an embedding such
that(1)→ {71}. In the case ofL168and our three candidate seven-dimensional representations
h, a + b anda + k + l, it can be deduced from table 3 that:

h⊗ {2} = a + 2b + h + j (2a)

h⊗ {12} = h + j + k + l (2b)

(a + b)⊗ {2} = 2a + 3b + h + j (2c)

(a + b)⊗ {12} = b + h + j (2d)

(a + k + l)⊗ {2} = 2a + 2b + j + k + l (2e)

(a + k + l)⊗ {12} = a + j + 2k + 2l. (2f)

It follows that consistency with (1) is violated in the case of the representationa + b, but that
bothh anda + k + l satisfy the requisite consistency conditions.

It remains now to determine whether or not in the reduction of the eight-dimensional spin
irreducible representation1 of SO(7) toL168 a spinor is left invariant, just as it is in the case of
the reduction fromSO(7) toG2. This defining property [13] ofG2 is such that1→ (0)+(1),
or equivalently

(1)⊗1 = (0) + (1). (3)

It follows that in the case of any faithful, unimodular, orthogonal seven-dimensional
representationλH of H , a necessary and sufficient condition forH to be a subgroup ofG2 is
that

λH ⊗1 = 1H + λH . (4)

Using the algebra of plethysms, the known plethysm of the spin representation1 of SO(7)
[7] and (4) we have

(λH ⊗1)⊗ {2} = λH ⊗ (1⊗ {2})
= λH ⊗ {13} + 1H (5a)

and

(λH ⊗1)⊗ {2} = (1H + λH )⊗ {2}
= 1H + λH + λH ⊗ {2}. (5b)

Comparison of(5a) and(5b) then implies that forH to be a subgroup ofG2 it is necessary
that

λH ⊗ {13} = λH + λH ⊗ {2}. (5c)

The fact that, conversely,(5c) implies (4) is dealt with in section 5. By virtue of (1) we have

〈λH ⊗ {13}, 1H 〉 > 1. (6)

This coincides with the condition (ii) of lemma 2 listed by Cohen and Wales [9] as necessary for
H to be a subgroup ofG2. Condition(5c) is stronger, and when coupled with the orthogonality
and unimodularity conditions onλH , is sufficient to ensure thatH is a subgroup ofG2.
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Remarkably, the plethysm identity(5c) can only be true if

Dim(λH ) = 7 (7)

which is the case here.
Explicit evaluation of plethysms then yields the results:

h⊗ {13} = a + 2b + 2h + j (8a)

h + (h⊗ {2}) = a + 2b + 2h + j (8b)

(a + b)⊗ {13} = 3h + j + k + l (8c)

(a + b) + ((a + b)⊗ {2}) = 3a + 4b + j (8d)

(a + k + l)⊗ {13} = 3a + 2b + j + 2k + 2l (8e)

(a + k + l) + ((a + k + l)⊗ {2}) = 3a + 2b + j + 2k + 2l. (8f)

It follows that(5c) is satisfied in the case of bothh anda + k + l, but not in the case ofa + b.
This is entirely in line with the conclusion following (2).

We conclude thatL168 is a subgroup ofG2. Indeed there exist two distinct embeddings
of L168 in G2 defined by

G2→ L168 : (1)→ h and (1)→ a + k + l. (9)

These two embeddings are analogous to the two embeddings ofSO(3) in G2 defined by
the restrictionsG2 → SO(3) with (1) → [3] and G2 → SU(3) → SO(3) with
(1)→ {1}+ {12}+ {0} → 2[1] + [0]. In fact the analogy can be extended further by noting that
the second of our two embeddings ofL168 inG2 defined in (9) is such thatG2 ⊃ SU(3) ⊃ L168

with

(1)→ {1} + {12} + {0} → k + l + a. (10)

This follows from the fact that the irreducible representationk ofL168 is a faithful, unimodular,
unitary three-dimensional representation. It therefore defines an embedding ofL168 in SU(3)
through the restriction

SU(3)→ L168 : {1} → k. (11)

Since{12} is complex conjugate to{1} and l is the complex conjugate ofk, we also have
{12} → l, as required to give (10).

4. The use of eigenvalues of representation matrices ofL168

As noted earlier, the group denoted here byL168 can be defined in terms of generators and
relations by〈R, S, T , |R2 = S3 = T 7 = RST = (T SR)4 = 1〉. It can be realized as a
subgroup of the symmetric groupS8. The cycle structure of elements in its six conjugacy classes
are given by(18), (24), (1232), (42), (17), (17), so that the elements themselves have order
1, 2, 3, 4, 7, 7, respectively. This implies that the eigenvalues of the matrices representing these
elements can only be powers of the corresponding primitive roots of unity. This observation is
sufficient in almost all cases to write down the complete set of eigenvalues of each irreducible
matrix representation simply from a knowledge of the characters in table 1, which are of
course the sums of the eigenvalues. The only additional observation that is required in order to
complete this exercise is that the cycle structure ofT SR is (42) and that of(T SR)2 is (24). The
corresponding matrices can be simultaneously diagonalized so that in any given irreducible
representation the eigenvalues in the conjugacy class labelled by(24) are the squares of those
in the conjugacy class labelled by(42). The results for each of the irreducible representations
of L168 are displayed in tables 4(a) and (b), whereω = ei2π/3 andη = ei2π/7.
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Table 4. Eigenvalues of group elements in each conjugacy class ofL168 in the irreducible
representationsa, b, h, j , k andl.

Irrep a b h

Dim 1 6 7

(18) 1 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1)
(24) 1 (1, 1, 1, 1,−1,−1) (1, 1, 1,−1,−1,−1,−1)
(1232) 1 (1, 1, ω, ω, ω2, ω2) (1, 1, 1, ω, ω, ω2, ω2)

(42) 1 (1, 1,−1,−1, i,−i) (1,−1,−1, i, i,−i,−i)
(17) 1 (η, η2, η3, η4, η5, η6) (1, η, η2, η3, η4, η5, η6)

(17) 1 (η, η2, η3, η4, η5, η6) (1, η, η2, η3, η4, η5, η6)

Irrep j k l

Dim 8 3 3

(18) (1, 1, 1, 1, 1, 1, 1, 1) (1, 1, 1) (1, 1, 1)
(24) (1, 1, 1, 1,−1,−1,−1,−1) (1,−1,−1) (1,−1,−1)
(1232) (1, 1, ω, ω, ω, ω2, ω2, ω2) (1, ω, ω2) (1, ω, ω2)

(42) (1, 1,−1,−1, i, i,−i,−i) (1, i,−i) (1, i,−i)
(17) (1, 1, η, η2, η3, η4, η5, η6) (η, η2, η4) (η3, η5, η6)

(17) (1, 1, η, η2, η3, η4, η5, η6) (η3, η5, η6) (η, η2, η4)

By taking products of the tabulated eigenvalues it is easy to confirm, as stated in section 3,
that each irreducible representation ofL168 is unimodular. These tabulations may also be used
to confirm the orthogonality of each representation. Here, however, we wish to show that the
tabulations offer a very quick way to determine which of the seven-dimensional representations
h, a + b anda + k + l define embeddings ofL168 in G2.

Proposition. LetλH be a faithful, orthogonal, unimodular, seven-dimensional represention of
a compact or finite groupH . If the eigenvalues of every group element in the representation
λH are of the form{1, x, y, z, x−1, y−1, z−1} for somex, y andz such that|x| = |y| = |z| = 1
andxyz = 1, thenH is a subgroup ofG2 with an embedding defined by(1)→ λH .

Proof. First, it should be noted that sinceλH is orthogonal, unimodular and seven-dimensional
the image of each group element in the representationλH is an element ofSO(7). All such
elements necessarily have eigenvalues{1, x, y, z, x−1, y−1, z−1}, wherex, y andz are each of
the form eiφ for some realφ.

With this notation the characters ofλH andλH ⊗1 are given by

λH = 1 +x + y + z + x−1 + y−1 + z−1 (12a)

λH ⊗1 = (x 1
2 + x−

1
2 )(y

1
2 + y−

1
2 )(z

1
2 + z−

1
2 ). (12b)

Now let

f (x, y, z) = λH ⊗1− 1H − λH . (13)

Substituting(12a) and(12b) into (13) gives

f (x, y, z) = (x 1
2 + x−

1
2 )(y

1
2 + y−

1
2 )(z

1
2 + z−

1
2 )− (2 +x + y + z + x−1 + y−1 + z−1)

= x−1(x
1
2y

1
2 z

1
2 − 1)(x

1
2y

1
2 z−

1
2 − 1)(x

1
2y−

1
2 z

1
2 − 1)(x

1
2y−

1
2 z−

1
2 − 1). (14)

It follows thatf (x, y, z) = 0 if and only if

xαyβzγ = 1 for some α, β, γ ∈ {1,−1}. (15)
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Table 5. Eigenvalues(x, y, z) for seven-dimensional orthogonal representationsλH of L168 and
the corresponding characters ofλH ⊗1.

Irrep λH = h λH = a + b λH = a + k + l

Class (x, y, z) 1 (x, y, z) 1 (x, y, z) 1

(18) (1, 1, 1) 8 (1, 1, 1) 8 (1, 1, 1) 8
(24) (1,−1,−1) 0 (1, 1,−1) 0 (1,−1,−1) 0
(1232) (1, ω, ω2) 2 (1, ω, ω2) 2 (1, ω, ω2) 2
(42) (−1, i, i) 0 (1,−1, i) 0 (1, i,−i) 4
(17) (η, η2, η4) 1 (η, η2, η4) 1 (η, η2, η4) 1
(17) (η3, η5, η6) 1 (η3, η5, η6) 1 (η3, η5, η6) 1

Since the identification ofx, y andz amongst the set{x, y, z, x−1, y−1, z−1} is entirely a matter
of choice, it follows from (13) that

λH ⊗1 = 1H + λH (16)

if and only if there exists some choice ofx, y andz such thatxyz = 1. To complete the proof
of the Proposition it is merely necessary to note that (16) coincides with the necessary and
sufficient condition identified in (4). �

To avoid the use of spinor characters it is possible to arrive at the same result through the
use of the necessary and sufficient condition(5c). This can be seen by noting that

λH ⊗ {13} − λH − λH ⊗ {2} = f (x2, y2, z2). (17)

Condition(5c) then takes the formf (x2, y2, z2) = 0. The same factorization as noted in (14)
coupled with an appropriate identification ofx, y andz, then leads, as before, to the condition
xyz = 1.

The conditionxyz = 1 is nothing other than a re-statement of condition (iv) of lemma 2
of Cohen and Wales [9], from which can be derived their conditions (ii), (v) and (vi).

In the case ofH = L168 this can be illustrated for each of the faithful, orthogonal,
unimodular seven-dimensional representationsh, a +b anda + k + l by trying to identify from
the tables 4(a) and (b) a suitable choice ofx, y andz for each conjugacy class. They are not
necessarily unique since any given eigenvalue may be associated with either one of a pair such
asx andx−1. However, the corresponding values of the character1 are unique and these are
displayed in table 5 forλH given byh, a + b anda + k + l alongside one particular choice of
(x, y, z) in each conjugacy class.

Examination of this table indicates thatxyz = 1 for all cases except those of the conjugacy
classes(24) and(42) of the representationa + b. In these two cases there is no choice ofx, y
andz such thatxyz = 1. Thus onlyh anda + k + l, but nota + b, define embeddings ofL168

in G2.
Comparison of the results of table 5 with the character table ofL168 given in table 1 also

shows that

h⊗1 = a + h (18a)

(a + b)⊗1 = a + h (18b)

(a + k + l)⊗1 = a + (a + k + l). (18c)

Sincea = 1H forH = L168 this confirms, yet again, that the necessary and sufficient condition
(4) is satisfied in the casesλH = h anda + k + l, but nota + b.
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Table 6. Branching rules for the restrictionG2→ L168 defined by(1)→ h.

Dim G2→ L168

1 (00) a

7 (10) h

27 (20) 2b + h + j
14 (21) j + k + l
77 (30) a + 2b + 4h + 3j + 2k + 2l
64 (31) 2b + 2h + 4j + k + l

182 (40) 3a + 8b + 7h + 8j + 3k + 3l
189 (41) 6b + 9h + 9j + 3k + 3l
77 (42) a + 4b + 2h + 4j + k + l

378 (50) a + 12b + 17h + 18j + 7k + 7l
448 (51) 2a + 16b + 18h + 22j + 8k + 8l
286 (52) 2a + 10b + 12h + 13j + 6k + 6l
714 (60) 6a + 28b + 30h + 33j + 11k + 11l
924 (61) 5a + 32b + 37h + 45j + 18k + 18l
729 (62) 5a + 28b + 30h + 35j + 11k + 11l
273 (63) 2a + 8b + 13h + 12j + 6k + 6l

1254 (70) 8a + 42b + 54h + 59j + 24k + 24l
1728 (71) 10a + 62b + 72h + 82j + 31k + 31l
1547 (72) 8a + 54b + 65h + 74j + 28k + 28l
896 (73) 6a + 32b + 38h + 42j + 16k + 16l

2079 (80) 15a + 78b + 84h + 99j + 36k + 36l
3003 (81) 15a + 106b + 126h + 144j + 53k + 53l
2926 (82) 20a + 108b + 120h + 139j + 51k + 51l
2079 (83) 11a + 72b + 88b + 99j + 38k + 38l
748 (84) 6a + 30b + 28h + 36j + 13k + 13l

3289 (90) 18a + 114b + 141h + 155j + 60k + 60l
4928 (91) 28a + 176b + 204h + 236j + 88k + 88l
5103 (92) 30a + 180b + 213h + 243j + 93k + 93l
4096 (93) 26a + 146b + 172h + 194j + 73k + 73l
2261 (94) 11a + 80b + 94h + 109j + 40k + 40l
5005 (10 0) 33a + 184b + 208h + 237j + 86k + 86l

5. Branching rules forG2→ L168 andSU (3)→ L168

Branching rules for the decomposition of irreducible representations under the restrictions
G2→ L168 with (1)→ h andSU(3)→ L168 with {1} → k may be calculated quite readily.

In the former case we may evaluate the decomposition for an arbitrary irreducible
representation ofG2 by simply working along the group chainG2 ↑ O(7) ↓ S8 ↓ L168

to produce the results given in table 6.
In the latter case one may rapidly build up a table by resolving products inSU(3) and

L168. This yields the results listed in table 7. The results for the contragredient partners to
those listed in table 7 may be found by simply making the interchangek ↔ l. Branching rules
for the restrictionG2→ L168 using the alternative embedding such that(1)→ a + k + l can
be obtained by exploiting the group chainG2 ↓ SU(3) ↓ L168, the first stage of which is well
documented [15].
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Table 7. Branching rules for the restrictionSU(3)→ L168 defined by{1} → k.

Dim SU(3)→ L168

1 {0} a

3 {1} k

3 {12} = {1} l

6 {2} b

8 {21} j

10 {3} h + l
15 {31} h + j
15 {4} a + b + j
24 {41} b + h + j + k
27 {42} 2b + h + j
21 {5} h + j + k + l
35 {51} b + h + 2j + k + l
42 {52} b + 2h + 2j + k + l
28 {6} a + 2b + h + j
48 {61} 2b + 2h + 2j + k + l
60 {62} a + 3b + 2h + 3j + l
64 {63} a + 2b + 3h + 3j + k + l

Table 8. Characters of the irreducible representations ofL168 evaluated on the conjugacy classes
of the subgroupS4.

(14) (122) (22) (13) (4)

a 1 1 1 1 1
b 6 2 2 0 0
h 7 −1 −1 1 −1
j 8 0 0 −1 0
k 3 −1 −1 0 1
l 3 −1 −1 0 1

6. The octahedral subgroup ofL168

In terms of potential applications it is worth noting thatL168 contains the symmetric groupS4

as a subgroup [8] which itself is isomorphic to the crystallographic point groupO, commonly
known as the octahedral group [3].

For f electrons in a weak crystal field of octahedral symmetry it is common to consider
the group–subgroup chain segmentG2 ⊃ SO(3) ⊃ O. An alternative group–subgroup chain
segment would beG2 ⊃ L168 ⊃ O, with SO(3) being lost as an approximate spherical
symmetry group.

The branching rules forL168→ S4 = O may be readily found from a knowledge of the
characters ofL168 over the classes of its subgroupS4 as shown in table 8. It should be noted
that on restriction fromL168 toS4 the surviving sets of elements in the classes(18), (1232) and
(42) constitute the classes(14), (13) and(4), respectively, ofS4, while the set of those in the
class(24) splits so as to constitute the two classes(122) and(22) of S4.

Comparison of this with the character table [7] ofS4 or, equivalently, that [3] ofO,
immediately leads to theL168→ S4 ∼ O branching rules displayed in table 9.
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Table 9. Branching rules forL168→ S4 ∼ O.

Dim L168 S4 O

1 a {4} 01

6 b {4} + {31} + {22} 01 + 04 + 03

7 h {31} + {212} + {14} 04 + 05 + 02

8 j {31} + {22} + {212} 04 + 03 + 05

3 k {212} 05

3 l {212} 05
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